Adaptive Road Following using Self-Supervised Learning and Reverse Optical Flow

نویسندگان

  • David Lieb
  • Andrew Lookingbill
  • Sebastian Thrun
چکیده

The majority of current image-based road following algorithms operate, at least in part, by assuming the presence of structural or visual cues unique to the roadway. As a result, these algorithms are poorly suited to the task of tracking unstructured roads typical in desert environments. In this paper, we propose a road following algorithm that operates in a selfsupervised learning regime, allowing it to adapt to changing road conditions while making no assumptions about the general structure or appearance of the road surface. An application of optical flow techniques, paired with one-dimensional template matching, allows identification of regions in the current camera image that closely resemble the learned appearance of the road in the recent past. The algorithm assumes the vehicle lies on the road in order to form templates of the road’s appearance. A dynamic programming variant is then applied to optimize the 1-D template match results while enforcing a constraint on the maximum road curvature expected. Algorithm output images, as well as quantitative results, are presented for three distinct road types encountered in actual driving video acquired in the California Mojave Desert.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color Vision for Road Following

At Camegie Mellon University, we have two new vision systems for outdoor road following. The first system, called SCARF (Supervised Classification Applied to Road Following), is designed to be fast and robust when the vehicle is running in both sunshine and shadows under constant illumination. The second system, UNSCARF (UNSupervised Classification Applied to Road Following), is slower, but pro...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Self - supervised Learning Method for Unstructured Road Detection using Fuzzy Support Vector

Road detection is a crucial problem in the application of autonomous vehicle and on-road mobile robot. Most of the recent methods only achieve reliable results in some particular well-arranged environments. In this paper, we describe a road detection algorithm for front-view monocular camera using road probabilistic distribution model (RPDM) and online learning method. The primary contribution ...

متن کامل

EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based Cameras

Event-based cameras have shown great promise in a variety of situations where frame based cameras suffer, such as high speed motions and high dynamic range scenes. However, developing algorithms for event measurements requires a new class of hand crafted algorithms. Deep learning has shown great success in providing model free solutions to many problems in the vision community, but existing net...

متن کامل

A Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network

Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005